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About Me
B.S. W&M ’00

Double Major (CS & Math).
Research in optimization & applied statistics w/ Torczon
and Trosset (Indiana).

Ph.D. UIUC ’06
CS w/ Computational Science & Engineering option.
Research in numerical linear algebra w/ de Sturler(VT).

Sandia National Laboratories, Postdoc
Scalable algorithms group.
Research in multilevel methods w/ Tuminaro and Hu.
Trilinos project: http://trilinos.sandia.gov
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Course Background
Assumed audience background:

Multivariable calculus (MATH 212).
Linear algebra (MATH 211).

A more detailed talk would require:
Algorithms (CS 303).
Advanced linear algebra (MATH 408).
Numerical analysis (MATH 413, 414).
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What is Computational Science?
What do we think of when we think of
computational science?

Usually “big” things. . .
Airplanes, cars, rockets, etc.
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What is Computational Science?
What do we think of when we think of
computational science?

Usually “big” things. . .
Airplanes, cars, rockets, etc.

BUT computational science touches
everyday things as well!
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Process of Computational Science
Model the problem.
Discretize the model.
Solve the discrete problem.
Analyze results.
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Process of Computational Science
Model the problem.
Discretize the model.
Solve the discrete problem.
Analyze results.

Note: There are more “steps,” which I am neglecting.

Introduction to Multilevel Solvers for the Physical Sciences – p.9/45



Model the Problem
“All models are wrong; some models are useful” – George Box

For this talk, we consider only PDE-based models.
Example problem: thermal diffusion on a beam.

Model: Heat Equation

∂u

∂t
= c

∂2u

∂x2
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Discretize the Problem
“Truth is much too complicated to allow anything but approximations” – John von Neumann

Problem must be discrete to solve on a computer.
Why not analytic methods?

Complicated geometries.
Complicated physics.
Solution may not exist.

Analytic methods critical for verification & validation.
Types of discretization: Finite difference, finite element,
finite volume.
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Example: Finite Differences (1)
Limit definition of derivative:

f ′(x) = lim
h→0

f(x + h) − f(x)

h

Basic idea: pick a finite h.

f ′(x) ≈
f(x + h) − f(x)

h

We can do this for 2nd derivatives as well:

f ′′(x) ≈
f(x + h) − 2f(x) + f(x − h)

h2
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Example: Finite Differences (2)
Model:

∂u

∂t
= c

∂2u

∂x2

Discretization (subscript = space, superscript = time):

Uk+1
j − Uk

j

∆t
= c

Uk+1
j+1 − 2Uk+1

j + Uk+1
j−1

(∆x)2

Mesh:
∆x ∆x ∆x ∆x
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Solve the Discrete Problem
“Mathematics is the queen of the sciences” – Carl Friedrich Gauss

Discretization (subscript = space, superscript = time):

Uk+1
j − Uk

j

∆t
= c

Uk+1
j+1 − 2Uk+1

j + Uk+1
j−1

(∆x)2

This is a linear system:

[

−
c

(∆x)2

(

2 c
(∆x)2 + 1

∆t

)

−
c

(∆x)2

]







Uk+1
j−1

Uk+1
j

Uk+1
j+1






=

Uk
j

∆t

for j = 1, . . . , n.
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Analyze the Results
“When you are solving a problem, don’t worry. Now, after you have solved

the problem, then that’s the time to worry.” – Richard Feynman

Is there something we missed in the model?
Does the answer look plausible?
Does the answer match experiment (if applicable)?
Does the answer converge with mesh refinement?
What does the answer tell us about the underlying
problem?
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Importance of Linear Algebra
Solving linear systems was critical to the example
⇒ One linear solve per time step!
This is true of many simulations.
We can do this w/ Gaussian elimination (GE).
But is it fast enough?
How long does GE take for an n × n matrix?
We need time complexity analysis!
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Gaussian Elimination






a b c

d e f

g h i













x

y

z






=







α

β

γ







Total Operations = 0
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Gaussian Elimination






1 b c

d e f

g h i













x

y

z






=







α

β

γ







Total Operations ≈ n

1. Divide through the 1st row by a.
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Gaussian Elimination






1 b c

0 e f

g h i













x

y

z






=







α

β

γ







Total Operations ≈ 2n
1. Divide through the 1st row by a.
2. Subtract off d times the first row from the second.
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Gaussian Elimination






1 b c

0 e f

0 h i













x

y

z






=







α

β

γ







Total Operations ≈ n2

1. Divide through the 1st row by a.
2. Subtract off d times the first row from the second.
3. Do the same for the remaining n − 2 rows.
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Gaussian Elimination






1 b c

0 1 f

0 0 1













x

y

z






=







α

β

γ







Total Operations ≈ n3

1. Divide through the 1st row by a.
2. Subtract off d times the first row from the second.
3. Do the same for the remaining n − 2 rows.
4. Repeat the for the remaining n − 1 columns.
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Is GE Good Enough?
A sparse matrix is “any matrix with enough zeros that it pays to take

advantage of them.” — J. Wilkinson

For dense problems (almost all entries non-zero), yes.
But what about sparse problems?
Example: 1D Heat equation has 3 non-zeros per row.

1D Heat Equation Sparsity
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Introducing Iterative Methods
Ax = b

Idea: Sparse matrix-vector products are cheap
cost = # non-zeros.
Let D = diag(A) contain “a lot” of the matrix. Then,

(D + (A − D))x = b

Dx = b − (A − D)x

x = D−1(b − (A − D)x)

Jacobi’s method:

xi+1 = xi + D−1(b − Axi)

Total Operations ≈ nnz.
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Speed of Various Methods
Consider a model Laplace problem of size: n = kd, where
d = 2, 3.

Method 2D 3D
Dense GE k6 k9

Sparse GE k3 k6

Jacobi k4 log k k5 log k

Multigrid k2 k3

Table from:

Scientific Computing: An Introductory Survey, 2nd ed. by M.T. Heath
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Introducing Multilevel Methods
Goal: Solve problem with specified mesh spacing, h.
Idea: Approximate problem w/ coarse mesh H.

Big Question: Will this work?
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Fourier Series
Consider a (real) Fourier series

f(x) =
a0

2
+

∞
∑

i=1

αi cos(2πxi)

What do these functions look like?
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Sampling Fourier Modes
What modes can a discretization sample?
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Multigrid & Fourier Modes
Question: What does this have to do with multigrid?
Coarse grids can only resolve smooth modes.
Coarse grids cannot resolve oscillatory modes (aliasing).
Next question: What about oscillatory modes?
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Coarse Grid OK. Coarse Grid no help.
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Jacobi to the Rescue
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Oscillatory Mode
1 Jacobi Step
2 Jacobi Steps
5 Jacobi Steps
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Multigrid by Picture

Smooth

Smooth

Smooth

Smooth

Solve
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Multigrid Method for Ahx = b

Loop until convergence...
1. Smooth on fine grid.

jacobi(Ah, x, b).
2. Transfer residual (b − Ahx) to coarse grid (restriction).

rc = P T (b − Ahx).
3. Solve on coarse grid.

xc = A−1
H rc.

4. Transfer solution to fine grid (prolongation).
x = x + Pxc

5. Smooth on fine grid.
jacobi(A,x, b).
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Open Questions in Multigrid
MG is designed problems like Laplace or Heat equation.
On other problems additional issues arise.
Mathematical issues: anisotropy, systems, variable
materials.
Computer science issues: parallelism, scalability.
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Math Issue #1: Anisotropy
∂2u

∂x2
+ ε

∂2u

∂y2
= f

Anisotropic operators have direction-dependent behavior.
Example: Heat diffuses “faster” in y direction (ε small).
Tests varying ε w/ 10, 000 unknowns.

ε = 1 ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4

Iterations 14 20 53 129 189

This is BAD!
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Reacting to Anisotropy
Better meshes fix some problems.

Isotropic Mesh Anisotropic Mesh
Meshes alone cannot solve hard problems.
Research problem: Robust detection of anisotropy.
Research problem: Non-axial anisotropy.
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Math Issue #2: PDE Systems

Image courtesy of the CSAR/UIUC
http://www.csar.uiuc.edu

PDE systems multiple different types of variables (e.g.
displacement, velocity, pressure, temperature, etc.).
Example: Linear elasticity.
One solution: Smoothed aggregation — explicitly preserve
null space on coarse levels.
Research problem: Fluid problems (e.g. Navier-Stokes).
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Math Issue #3: Multimaterial
Material interfaces can be sites of discontinuities
⇒ oscillatory modes at boundaries.
Features can be hard to resolve on coarse grid.

Research problem: Detecting material interfaces.
Research problem: Handling disappearing features.
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CS Issues: Parallelism
More processors should lead to faster solutions.
Strong scaling — fix work, increase processors.
Example: 2,000 steps of Jacobi.

100 101 1020

1

2

3

4

5

Processors

Ti
m

e 
(s

ec
on

ds
)

 

 

Strong Scaling
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CS Issues: Parallelism
More processors should lead to faster solutions.
Strong scaling — fix work, increase processors.
Example: 2,000 steps of Jacobi.
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Strong Scaling

Question: What causes the loss in efficiency?
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Understanding Efficiency
Answer: Computation to communication ratio.
Weak scaling — fix work per processor.
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Strong Scaling
Weak Scaling

Message: What works on a small # of procs, might
not work on a large #.
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CS Issue #1: Scalability

Red Storm(SNL) 26,569 procs Jaguar(ORNL) 23,016 procs

Coarse grids ⇒ less work per proc ⇒ poor performance.
One solution: Move data to leave some procs idle.
Research problem: What is the best way to repartition?
Research problem: How to address poor performance on
really big (terascale) computers.
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Take Home
“I would rather have today’s algorithms on yesterday’s computers

than vice versa.” - Reported by P. Toint

Ubiquity of computational science.
Importance of good algorithms.
Rationale behind multilevel algorithms.
Nature of the “big questions” in multilevel algorithm
research.

Math: Anisotropy, multimaterial, PDE systems.
CS: parallelism, scalability.

My web site: http://www.sandia.gov/~csiefer
Trilinos project: http://trilinos.sandia.gov
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